Exponential Functions

Review of Exponents

In this chapter we will define and discuss the properties of exponential functions. These are functions of the form \(a^x \) where \(a \) is a positive real number, and \(x \) is any real number. Before discussing this function, we’ll quickly review the laws of exponents, and then show how \(a^x \) is defined for irrational numbers. A reminder of terminology: \(a \) is called the base and \(x \) is called the power or exponent.

Below we quickly review exponentiation, and the laws of exponents. For a more thorough review see the previous chapter on Exponents. The following lists those \(x \) for which we can compute \(a^x \), and how to do so. Remember \(a \) is any positive real number.

1. If \(x = 0 \), then \(a^x \) is defined to be 1.
2. If \(x \) is a positive integer, then \(a^x \) is computed by multiplying \(a \) by itself \(x \) times. Thus, \(a^5 = aaaaa \).
3. If \(x \) is a negative integer, then \(a^x = \left(\frac{1}{a} \right)^{-x} \). Thus, \(a^{-5} = \left(\frac{1}{a} \right)^{5} \).
4. If \(x \) is the reciprocal of an integer, e.g., \(x = \frac{1}{5} \), then \(a^x = b \) where \(b^{1/x} = a \). Note: if \(x = 1/5 \), then \(1/5 = 5 \). Thus, \(a^{1/5} = b \), if and only if \(b^5 = a \).
 That is, \(a^x \) is the \(x \)th root of \(a \). There is of course a computational problem here. It may not be easy to compute the \(x \)th root of \(a \).
5. If \(x \) is a rational number, i.e., \(x = \frac{m}{n} \) where \(m \) and \(n \neq 0 \) are integers, then \(a^x = (a^m)^{1/n} \).

The table below lists the algebraic properties of exponents:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a^m \cdot a^n = a^{m+n})</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{a^m}{a^n} = a^{m-n})</td>
</tr>
<tr>
<td>3</td>
<td>(a^{-n} = \frac{1}{a^n})</td>
</tr>
<tr>
<td>4</td>
<td>(a^0 = 1) for (a \neq 0)</td>
</tr>
<tr>
<td>5</td>
<td>((ab)^n = a^nb^n)</td>
</tr>
<tr>
<td>6</td>
<td>(\left(\frac{a}{b} \right)^n = \frac{a^n}{b^n})</td>
</tr>
<tr>
<td>7</td>
<td>((a^m)^n = a^{mn})</td>
</tr>
</tbody>
</table>

If you don’t already have these rules memorized, stop right now, and memorize them.

Question: What does \((16)^{-3/4} \) equal?

Answer:

\[
(16)^{-3/4} = (2^4)^{-3/4} = (2)^{-3} = 8^{-1} = \frac{1}{8}
\]

The problem we now face is what does \(a^x \) mean if \(x \) is an irrational number? For example what do \(2^\pi \), or \(3^{\sqrt{2}} \) equal? See the next page for a discussion of this.
In this page the computation of \(a^x \) is discussed for the case when \(x \) is irrational. We need one property of rational numbers before we can compute \(a^x \), and this property is:

Given any irrational number \(x \), there is a rational number \(\frac{m}{n} \) which is as close to \(x \) as we want.

Another way to express this, is to say that any irrational number can be approximated as closely as we desire with a rational number.

This is the key to calculating (approximating) \(a^x \), we find a rational number \(\frac{m}{n} \) which is very close to \(x \), and then compute \(a^{\frac{m}{n}} \). This number, \(a^{\frac{m}{n}} \), can then be shown to be close to something. This something is called \(a^x \).

The plot below shows \(2^x \) for various rational values of \(x \) between \(-1\) and \(1\), they are the red circles. The blue curve is the plot of \(2^x \) on the interval \(-1\) to \(1\).

![Plot of 2^x](image)

There are only a few red dots and lots of blue. This is the general situation. There are a lot more irrational numbers then there are rational numbers, but the amazing thing is that any irrational number can be approximated with a rational number.

In the following example we use a calculator to compute \(2^x \) for a sequence of rational numbers \(x \) which are getting close to the irrational number \(\sqrt{2} \). These numbers \(2^x \) will be getting close to \(2^{\sqrt{2}} \).

Example 1: Compute \(2^x \) for a sequence of \(x \)'s getting close to \(\sqrt{2} \).

Solution: The rational numbers we will use to approximate \(\sqrt{2} \) are 1.4, 1.41, 1.414, 1.4142, 1.41421, and finally 1.414213. The table below list these values of \(x \) and below them the corresponding values of \(2^x \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.4</th>
<th>1.41</th>
<th>1.414</th>
<th>1.4142</th>
<th>1.41421</th>
<th>1.414213</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^x)</td>
<td>2.63902</td>
<td>2.65737</td>
<td>2.66475</td>
<td>2.66512</td>
<td>2.66514</td>
<td>2.66514</td>
</tr>
</tbody>
</table>

The value of \(2^{\sqrt{2}} \) as computed by our calculator to 7 decimal places is

\[
2^{\sqrt{2}} = 2.6651441
\]

Just imagine how long it would have taken to compute \(2^{1.414} \) without the aid of our calculator, and even then we are only within 2 decimal place accuracy of \(2^{\sqrt{2}} \).

We list one more time the laws of exponents. This time with the remark that the powers are now allowed to be any real number.

For any positive real number \(a \), and any real numbers \(x \) and \(y \), the following properties hold:

1. \(a^x a^y = a^{x+y} \)
2. \(\frac{a^x}{a^y} = a^{x-y} \)
3. \(a^{-x} = \frac{1}{a^x} \)
4. \(a^0 = 1 \) for \(a \neq 0 \)
5. \((ab)^x = a^x b^x \)
6. \(\left(\frac{a}{b} \right)^x = \frac{a^x}{b^x} \)
7. \((a^x)^y = a^{xy} \)