Logarithmic Functions

Properties of Logarithms
We list below some of the algebraic properties of logarithms. These properties should be memorized.

1. The domain of \(\log_a x \) is all positive real numbers and its range is all real numbers.
2. \(a^{\log_a x} = x \)
3. \(\log_a(a^x) = x \)
4. \(\log_a(x^y) = y \log_a x \)
5. \(\log_a 1 = 0 \)
6. \(\log_{a^x}(a^y) = \frac{y}{x} \log_a y \)
7. \(\log_a(x \cdot y) = \log_a x + \log_a y \)
8. \(\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y \)

Proofs of the above properties:

1. This follows from the fact that the \(\log_a x \) is the inverse function of \(a^x \), and the fact that the domain of \(a^x \) is all real numbers, while its range is all positive real numbers.
2. This follows directly from the definition. That is, \(\log_a x = y \) where \(y \) is a number such that \(a^y = x \). Thus, \(x = a^y = a^{\log_a x} \).
3. This property also follows directly from the definition of \(\log_a x \). That is, \(\log_a x = y \) if and only if \(a^y = x \). Thus, \(\log_a(a^x) = y \) if and only if \(a^y = a^x \). That is, \(x = y = \log_a(a^x) \).
4. If \(x = y \), then \(\log_a x = \log_a y \), for if not, then the fact that \(a^x \) is a one-to-one function implies that \(x \neq y \). Conversely if \(\log_a x = \log_a y \), then we have \(x = a^{\log_a x} = a^{\log_a y} = y \).
5. Since \(a^0 = 1 \) no matter what \(a \) equals, we have \(\log_a 1 = 0 \) for any base \(a \).
6. Let \(z = \log_a x \), then we must have \(a^z = x \). However, we also have \(a^{\log_a x} = a^{\log_a a^{\log_a x}} = a^{\log_a x} = x \). Thus, \(a^z = a^{\log_a x} \) from which we have \(\log_a x = z = \log_a x + \log_a y \).
7. Let \(z = \log_a(x^y) \). Then \(a^z = x^y \). Now compute \(a^{\log_a x^y} = a^{\log_a (a^{\log_a x^y})} = (x)^y = x^y \). Thus, we have \(a^z = a^{\log_a x^y} \). From this we deduce that \(\log_a(x^y) = z = y \log_a x \).
8. \(\log_a \left(\frac{x}{y} \right) = \log_a(x \cdot y^{-1}) = \log_a x + \log_a (y^{-1}) = \log_a x - \log_a y \)

Example 1: Let \(f(x) = \log_2(x - 1) \). What is the domain and range of \(f(x) \)? Plot this function.
Solution: For any log function its argument must be greater than 0. Thus, domain of \(f(x) = \{x : x - 1 > 0\} = \{x : x > 1\} \). The range of \(f(x) \) = all real numbers.
Example 2: Simplify the expression \(2^{2 \log_5 5}\).

Solution:
\[
2^{2 \log_5 5} = (2^2)^{\log_5 5} = 4^{\log_5 5} = 5.
\]

Example 3: Simplify \(\log_3 16 + \log_3 5 - \log_3 8\).

Solution:
\[
\log_3 16 + \log_3 5 - \log_3 8 = \log_3 (16 \cdot 5) - \log_3 8 = \log_3 \frac{16 \cdot 5}{8} = \log_3 2 \cdot 5 = \log_3 10 \approx 2.0959.
\]

Example 4: Solve the equation \(2 + 3 \log_5 x = 15\).

Solution:
\[
2 + 3 \log_5 x = 15 \\
3 \log_5 x = 13 \\
\log_5 x = \frac{13}{3} \\
x = 5^{13/3} \approx 1068.73.
\]

Example 5: Solve the equation \(4^{x-6} = 13\).

Solution: The easiest way to solve an equation in which the unknown is part of an exponent is to take the log of both sides of the equation.
\[
4^{x-6} = 13 \quad \text{take the log}_4 \text{ of both sides} \\
x - 6 = \log_4(4^{x-6}) = \log_4 13 \quad \text{solve for } x \\
x = 6 + \log_4 13 \\
\approx 6 + 1.85022 \\
\approx 7.85.
\]
As a check on our solution we compute \(4^{7.85022-6} = 4^{1.85022} \approx 13.0\).

As we mentioned previously logarithms are the inverse functions of the exponential functions. On the next page we examine this relationship more closely for the two functions \(\log_2 x\) and \(2^x\). Since \(\log_2 x\) is the inverse function of \(2^x\) we have
\[
\log_2 x = y \text{ if and only if } x = 2^y.
\]
The following table demonstrates this relationship with specific numbers:

2^0 = 1	\Leftrightarrow	$\log_2 1$ = 0
2^{-1} = $\frac{1}{2}$	\Leftrightarrow	$\log_2 \frac{1}{2}$ = -1
2^3 = 8	\Leftrightarrow	$\log_2 8$ = 3
2^{-4} = $\frac{1}{16}$	\Leftrightarrow	$\log_2 \frac{1}{16}$ = -4
2^6 = 64	\Leftrightarrow	$\log_2 64$ = 6

There is nothing special about base 2 in this relationship. For every base a it is true that

$$\log_a x = y \text{ if and only if } x = a^y$$

There is another way to write these relationships, and it is

$$\log_a(a^x) = x$$

$$a^{\log_a x} = x$$

Question: If $a^3 = 4.56$, what is $\log_a 4.56$?

Answer: $\log_a 4.56 = \log_a(a^3) = 3$

The graph below contains a plot of 2^x and $\log_2 x$.

Notice that each plot is the reflection of the other about the line $y = x$.

Question: If $\log_2 15 = y$, what does 2^y equal?

Answer: 15. If $\log_2 15 = y$, then $2^y = 2^{\log_2 15} = 15$.