Exponents and Radicals

Radicals and Properties of Radicals
Radicals (or roots) are, in effect, the opposite of exponents. In other words, the \(n \)th root of a number \(a \) is a number \(b \) such that
\[
b = \sqrt[n]{a} = a^{\frac{1}{n}} \iff b^n = a
\]
The number \(b \) is called an \(n \)th root of \(a \). The number \(n \) is referred to as the index of the radical (if no index appears, \(n \) is understood to be 2). The principal \(n \)th root of a number is the \(n \)th root of \(a \) which has the same sign as \(a \). For example both 2 and \(-2\) satisfy \(x^2 = 4 \), but 2 is the (principal) square root of 4.

Examples:
- \(\sqrt{27} = 3 \) since \(3^3 = 27 \)
- \(\sqrt{16} = 2 \) since \(2^4 = 16 \) (Note \(-2)^4 = 16 \) also, but 2 is the principal \(4 \)th root)
- \(\sqrt[3]{-64} = -4 \) since \(-4)^3 = -64 \)
- \(\sqrt[3]{-81} \) is not a real number and we will say that it does not exist. (In this course we won’t learn how to take an even \(n \)th power of a negative number.)

Radicals are used to define rational exponents:
\[
a^{\frac{1}{n}} = \sqrt[n]{a}
\]
\[
a^{\frac{m}{n}} = (\sqrt[n]{a})^m
\]
The notation \(a^{\frac{1}{n}} \) is extremely useful, and we encourage you to use it whenever you have to simplify expressions involving radicals.

Examples:
- \((125)^{\frac{1}{3}} = \sqrt[3]{125} = 5 \)
- \((-64)^{\frac{1}{3}} = \sqrt[3]{(-64)^2} = (\sqrt[3]{-64})^2 = (-4)^2 = 16 \)
- \((32)^{\frac{1}{5}} = \frac{1}{(32)^{\frac{1}{5}}} = \frac{1}{(\sqrt[5]{32})^3} = \frac{1}{2^3} = \frac{1}{8} \)

Since radicals are nothing more than rational exponents, many of the properties of exponents also apply to radicals.

<table>
<thead>
<tr>
<th>Property</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\sqrt{a^m} = (\sqrt{a})^m)</td>
<td>(\sqrt[3]{32^3} = (\sqrt[3]{32})^3 = 2^3 = 8)</td>
</tr>
<tr>
<td>2 (\sqrt{a} \cdot \sqrt{b} = \sqrt{ab})</td>
<td>(\sqrt{27} \cdot \sqrt{3} = \sqrt{81} = 9)</td>
</tr>
<tr>
<td>3 (\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} , b \neq 0)</td>
<td>(\sqrt{\frac{27}{8}} = \frac{\sqrt{27}}{\sqrt{8}} = \frac{3}{2})</td>
</tr>
<tr>
<td>4 (\sqrt[4]{a} = a^{\frac{1}{4}})</td>
<td>(\sqrt[4]{2x} = \sqrt[4]{2x})</td>
</tr>
<tr>
<td>5a If (n) is odd (\sqrt[n]{a^m} = a)</td>
<td>(\sqrt[3]{(-127)^3} = -127)</td>
</tr>
<tr>
<td>5b If (n) is even (\sqrt[n]{a^m} =</td>
<td>a</td>
</tr>
</tbody>
</table>
The following list is a restatement of these properties, but in exponential notation. You need to be familiar with both radical and exponential notation, and be able to convert between the two.

<table>
<thead>
<tr>
<th>Property</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ((a^m)^{1/n} = a^{m/n})</td>
<td>((32^3)^{1/5} = (32^{1/5})^3 = 2^3 = 8)</td>
</tr>
<tr>
<td>2 (a^{1/n}b^{1/n} = (ab)^{1/n})</td>
<td>(27^{1/2}3^{1/2} = (27 \cdot 3)^{1/2} = 81^{1/2} = 9)</td>
</tr>
<tr>
<td>3 (a^{1/n}b^{1/n} = \left(\frac{a}{b}\right)^{1/n}, b \neq 0)</td>
<td>(\left(\frac{27}{8}\right)^{1/3} = \frac{27^{1/3}}{8^{1/3}} = \frac{3}{2})</td>
</tr>
<tr>
<td>4 ((a^{1/m})^{1/n} = a^{1/mn})</td>
<td>((2x)^{1/4} = (2x)^{1/8})</td>
</tr>
<tr>
<td>5a If (n) is odd ((a^n)^{1/n} = a)</td>
<td>((-127)^3)^{1/3} = -127)</td>
</tr>
<tr>
<td>5b If (n) is even ((a^n)^{1/n} =</td>
<td>a</td>
</tr>
</tbody>
</table>

Examples:
- \(\sqrt[3]{-3}^2 = 3\) (refer to Property 5b)
- \(16^{3/2} = 16^{3/2} = ((16)^{1/2})^3 = 4^3 = 64\) (refer to property 1 given the right hand side)
- \((-16)^{3/2} = (-16)^{3/2} = ((-16)^{1/2})^3 = (-16)^{1/2} = \sqrt{-16}^3\) (refer to property 1)

 There is no answer as we cannot take the square root of \(-16\).
- \(32^{1/5}(27)^{1/3} = (32^{1/5})(27)^{1/3} = 2 \cdot 3 = 6\)