Rational Functions

Exercises

1. Which of the following functions is rational?
 a. $\frac{2x}{x^2 + 2x - 5}$
 b. $\frac{x^2 - 1}{x^4 + 2x - 5}$
 c. $\frac{x + x^3 - 3}{2x}$
 d. $x^2 - 3x + 5$

2. Is $f(x) = \frac{x - 1}{\sqrt{x}}$ a rational function.

3. Find the domain of each of the following functions.
 a. $\frac{x - 1}{x^2 - 1}$
 b. $\frac{2x^3 - 5x + 8}{x^5 - 8}$
 c. $\frac{x^5 - 1}{x^2 + x - 2}$

4. Find the range of the following functions.
 a. $\frac{1}{x - 2}$
 b. $\frac{1}{x^2} - 1$
 c. $\frac{3 - 2}{x + 5}$

In problems 5 through 9 find the x and y-intercepts of the rational function:

5. $\frac{2x^2 - 6}{x^2 + 1}$
6. $\frac{x^2 - 4}{2x}$
7. $\frac{2x + 1}{x}$
8. $\frac{3}{x^2 - 3x - 4}$
9. $\frac{2x^2 - 3x + 7}{x - 1}$

10. Find the limit as $x \to \infty$ of $\frac{2x - 1}{x}$
11. Find the limit as $x \to \infty$ of $\frac{2x^2 - 1}{x}$
12. Find the horizontal asymptote of $r(x) = \frac{2x^2 - 6}{-x^2 + 2}$ and plot the function
13. Find the limit as $x \to \infty$ of $\frac{x^3 - x^2 + 5x - 18}{19x^4 + 15}$, and plot the function for large values of x
14. Does the function $\frac{x^2 - 2x + 7}{x - 1}$ have a horizontal asymptote?
15. Find a rational function which has the line $y = 6$ as a horizontal asymptote.
16. Find a rational function which has 2 as an x-intercept and the line $y = -1$ as a horizontal asymptote.
17. Find a rational function which has -3 as an x-intercept, 7 as a y-intercept, and has the line $y = 1$ as a horizontal asymptote.
18. For each of the following functions locate their vertical asymptotes, and then plot the functions.
 a. $\frac{x}{x - 1}$
 b. $\frac{x^2 - 2}{x^2 - 3x + 2}$
 c. $\frac{x - 1}{x^2 + 2x - 3}$

19. Locate all vertical and horizontal asymptotes of $y = \frac{2x^2 - 1}{x^2 - x - 6}$
20. Locate all vertical and horizontal asymptotes of $y = \frac{x^2 - 1}{2x + 3}$
21. Find all intercepts and asymptotes of the function \(y = \frac{x^2 - 4}{-3x^2 + 27} \)
22. Find all asymptotes of the function \(y = \frac{3x^2 - 1}{x^3 - 1} \)
23. Find all asymptotes of the function \(y = \frac{x^4 - x^3 - 4x + 7}{5x^2 - 6} \)
24. Find a rational function which has \(y = 1 \) as a horizontal asymptote and the lines \(x = 3 \) and \(x = 5 \) as vertical asymptotes
25. Find a rational function which has the line \(y = \frac{5}{2} \) as a horizontal asymptote and the lines \(x = 4, x = 5, \) and \(x = -2 \) as vertical asymptotes
26. Which of the following functions have slanted asymptotes?
 a. \(\frac{2x - 6}{x^2 + 9} \)
 b. \(\frac{x^2 - 3x + 1}{5x^2 + 2x + 4} \)
 c. \(\frac{3x^2 + x + 8}{-5x + 2} \)
 d. \(\frac{5x^3 + 1}{2x - 7} \)
27. The rational function \(y = \frac{x^2 - 5x + 1}{2x - 8} \) has a slanted asymptote. What is it?
28. What is the slanted asymptote of the function \(y = x - 6 \)
29. What is the slanted asymptote of the function \(y = \frac{7x^3 - 5x + 8}{3x^2 + 4x - 1} \)
30. Find a rational function which has a vertical asymptote at \(x = 2 \) and the slanted asymptote \(y = -3x + 1 \)

In exercises 31 through 35 determine the domain, \(x \)-intercepts, \(y \)-intercepts, and all asymptotes of the given function.
31. \(\frac{5}{x^2 - 4} \)
32. \(\frac{7 - 2x}{x^2 + 5x + 4} \)
33. \(\frac{3x^2 - 15}{x + 7} \)
34. \(\frac{x^3 - 3x + 5}{-x^2 + 3x - 2} \)
35. \(\frac{x^3 - x - 1}{2x + 1} \)